inotifyemple
Release 1.3

Jun 20, 2022

Contents

1 Installation 3
2 Introduction 5
3 Example usage 7
4 Tips and tricks 9

4.1 Gracefully exitablocking read () e 9
5 Module reference 1
6 Full source code 15

Index 19

inotify imple, Releasel.3

Chris Billington, Jun 20, 2022

* Installation
e Introduction
* Example usage
* Tips and tricks
— Gracefully exit a blocking read ()

* Module reference

e Full source code

inotify_simple is a simple Python wrapper around inotify. No fancy bells and whistles, just a literal wrapper
with ctypes. Only ~100 lines of code!

inotify_initl () is wrapped as a file-like object, TNot i £y, holding the inotify file descriptor. read () reads
available data from the file descriptor and returns events as Event namedtuples after unpacking them with the
struct module. inotify_add_watch () and inotify_rm_watch () are wrapped with no changes at all,
taking and returning watch descriptor integers that calling code is expected to keep track of itself, just as one would
use inotify from C. Works with Python 2.7 and Python >=3.2.

View on PyPI | Fork me on GitHub | Read the docs

Contents 1

mailto:chrisjbillington@gmail.com
http://man7.org/linux/man-pages/man7/inotify.7.html
http://pypi.python.org/pypi/inotify_simple
https://github.com/chrisjbillington/inotify_simple
http://inotify_simple.readthedocs.org

inotify imple, Releasel.3

2 Contents

CHAPTER 1

Installation

toinstall inotify_simple, run:

’$ pip3 install inotify_simple

or to install from source:

’$ python3 setup.py install

Note: If on Python < 3.4, you’ll need the backported enum34 module.

https://pypi.python.org/pypi/enum34

inotify imple, Releasel.3

4 Chapter 1. Installation

CHAPTER 2

Introduction

There are many inotify python wrappers out there. I found them all unsatisfactory. Most are far too high-level for my
tastes, and the supposed convenience they provide actually limits one from using inotify in ways other than those the
author imagined. Others are C extensions, requiring compilation for different platforms and Python versions, rather
than a pure python module using ctypes. This one is pretty low-level and really just does what inotify itself does
and nothing more. So hopefully if I've written it right, it will remain functional well into the future with no changes,
recompilation or attention on my part.

https://xkcd.com/927/

inotify imple, Releasel.3

6 Chapter 2. Introduction

CHAPTER 3

Example usage

import os
from inotify simple import INotify, flags

os.mkdir ('/tmp/inotify_test"')

inotify = INotify ()
watch_flags = flags.CREATE | flags.DELETE | flags.MODIFY | flags.DELETE_SELF
wd = inotify.add_watch('/tmp/inotify_test', watch_flags)

Now create, delete and modify some files in the directory being monitored:
os.chdir ('/tmp/inotify test')

CREATE event for a directory:

os.system('mkdir foo'")

CREATE event for a file:

os.system('echo hello > test.txt')

MODIFY event for the file:

os.system('echo world >> test.txt'")

DELETE event for the file

os.system('rm test.txt')

DELETE event for the directory

os.system('rmdir foo')

os.chdir ('/tmp")

DELETE_SELF on the original directory. # Also generates an IGNORED event
indicating the watch was removed.

os.system('rmdir inotify_test')

And see the corresponding events:
for event in inotify.read():
print (event)
for flag in flags.from_mask (event.mask) :
print (' '+ str(flag))

$ python example.py
Event (wd=1, mask=1073742080, cookie=0, name='foo')

(continues on next page)

inotify imple, Releasel.3

(continued from previous page)

flags.CREATE
flags.ISDIR

Event (wd=1, mask=256, cookie=0, name='test.txt')
flags.CREATE

Event (wd=1, mask=2, cookie=0, name='test.txt')
flags.MODIFY

Event (wd=1, mask=512, cookie=0, name='test.txt')
flags.DELETE

Event (wd=1, mask=1073742336, cookie=0, name='foo')
flags.DELETE
flags.ISDIR

Event (wd=1, mask=1024, cookie=0, name='")
flags.DELETE_SELF

Event (wd=1, mask=32768, cookie=0, name='")
flags.IGNORED

Note that the flags, since they are defined with an enum. IntEnum, print as what they are called rather than their
integer values. However they are still just integers and so can be bitwise-ANDed and ORed etc with masks etc.
The from_mask () method bitwise-ANDs a mask with all possible flags and returns a list of matches. This is
for convenience and useful for debugging which events are coming through, but performance critical code should
generally bitwise-AND masks with flags of interest itself so as to not do unnecessary checks.

8 Chapter 3. Example usage

CHAPTER 4

Tips and tricks

4.1 Gracefully exit a blocking read ()

It is common for an application to block indefinitely on a read () while waiting for events to be received. However
it can be challenging to manage its shutdown.

When used without a timeout, the read () uses poll () on the internal file descriptor only. This call will return if
there is an event on one of the file descriptors it monitors.

The idea to correctly unblock the read () is to add a file descriptor to be processed in addition to the internal
descriptor. This new file descriptor will only be used to exit the application. Usually a pipe () is used for this

purpose.

The inotify_simple module is not intended to have such a high-level mechanism. But it can be done directly in the user
application by wrapping the calls to TNot i fy.

Such a wrapper should:
* Have an TNot iy object.
e Haveapipe ().
* Run select () orpoll () on both previous object descriptors.
* Retrieve the inotify events by calling read () with timeout=0 (so the underlying po11 () is not called).
* Send dummy data to the pipe when a stop has been requested.

An example wrapper class implementing Thread can be found below:

import os
import select
import threading

from inotify simple import INotify, masks, flags

class InotifyThread(threading.Thread):

(continues on next page)

https://docs.python.org/3/library/select.html#select.poll
https://docs.python.org/3/library/os.html#os.pipe
https://docs.python.org/3/library/os.html#os.pipe
https://docs.python.org/3/library/select.html#select.select
https://docs.python.org/3/library/select.html#select.poll
https://docs.python.org/3/library/select.html#select.poll
https://docs.python.org/3/library/threading.html#threading.Thread

inotify imple, Releasel.3

(continued from previous page)

def _ init__ (self, path):
self.__path = path

Initialize the parent class
threading.Thread.__init__ (self)

Create an inotify object
self.__inotify = INotify()

Create a pipe
self.__read_fd, write_fd = os.pipe()
self._write = os.fdopen(write_£fd, "wb")

def run(self):
Watch the current directory
self.__inotify.add_watch(self._ _path, masks.ALL_EVENTS)

while True:
Wait for inotify events or a write in the pipe
rlist, _, _ = select.select
[self.__inotify.fileno(), self.__read_f£fd], []1, []

Print all inotify events

if self._ _inotify.fileno() in rlist:
for event in self._ _inotify.read(timeout=0) :
flags = [f.name for f in flags.from_mask (event.mask)]

print (£" {event/ {flags/")

Close everything properly if requested
if self._ read_fd in rlist:

os.close(self._ read_fd)
self.__inotify.close()
return

def stop(self):
Request for stop by writing in the pipe
if not self._ write.closed:
self. write.write(b"\x00")
self._ write.close()

10 Chapter 4. Tips and tricks

CHAPTER B

Module reference

class inotify_simple.INotify (inheritable=False, nonblocking=False)
Bases: _io.FileIO

File-like object wrapping inotify_init1 (). Raises OSError on failure. close () should be called when
no longer needed. Can be used as a context manager to ensure it is closed, and can be used directly by functions
expecting a file-like object, such as select, or with functions expecting a file descriptor via fileno ().

Parameters

* inheritable (bool) — whether the inotify file descriptor will be inherited by child
processes. The default,*‘False‘‘, corresponds to passing the IN_CLOEXEC flag to
inotify_initl (). Setting this flag when opening filedescriptors is the default be-
haviour of Python standard library functions since PEP 446. On Python < 3.3, the file
descriptor will be inheritable and this argument has no effect, one must instead use fcntl to
set FD_CLOEXEC to make it non-inheritable.

* nonblocking (bool)— whether to open the inotify file descriptor in nonblocking mode,
corresponding to passing the IN_NONBLOCK flag to inotify_init1 (). This does not
affect the normal behaviour of read (), which uses pol1 () to control blocking behaviour
according to the given timeout, but will cause other reads of the file descriptor (for example
if the application reads data manually with os . read (£d)) toraise BlockingIOError
if no data is available.

fd
The inotify file descriptor returned by inotify_init (). You are free to use it directly with os . read
if you’d prefer not to call read () for some reason. Also available as £ileno ()

add_watch (path, mask)
Wrapper around inotify_add_watch (). Returns the watch descriptor or raises an OSError on
failure.

Parameters

e path (str, bytes, or PathLike) — The path to watch. Will be encoded with
os.fsencode () before being passed to inotify_add_watch ().

11

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

inotify imple, Releasel.3

* mask (int) — The mask of events to watch for. Can be constructed by bitwise-ORing
flags together.

Returns watch descriptor
Return type int

rm_watch (wd)
Wrapper around inotify_rm_watch (). Raises OSError on failure.

Parameters wd (int)— The watch descriptor to remove

read (timeout=None, read_delay=None)
Read the inotify file descriptor and return the resulting Zvent namedtuples (wd, mask, cookie, name).

Parameters

* timeout (int) - The time in milliseconds to wait for events if there are none. If negative
or None, block until there are events. If zero, return immediately if there are no events to
be read.

* read_delay (int) — If there are no events immediately available for reading, then
this is the time in milliseconds to wait after the first event arrives before reading the file
descriptor. This allows further events to accumulate before reading, which allows the
kernel to coalesce like events and can decrease the number of events the application needs
to process. However, this also increases the risk that the event queue will overflow due to
not being emptied fast enough.

Returns generator producing Event namedtuples

Return type generator

Warning: If the same inotify file descriptor is being read by multiple threads simultaneously, this
method may attempt to read the file descriptor when no data is available. It may return zero events, or
block until more events arrive (regardless of the requested timeout), or in the case that the TNot i £y ()
object was instantiated with nonblocking=True, raise BlockingIOError.

close ()
Close the file.

A closed file cannot be used for further I/O operations. close() may be called more than once without error.

fileno ()
Return the underlying file descriptor (an integer).

class inotify_simple.Event (wd, mask, cookie, name)

Bases: tuple

A namedtuple (wd, mask, cookie, name) for an inotify event. On Python 3 the name field is a st r decoded
with os. fsdecode (), on Python 2 itis bytes.

cookie
Alias for field number 2

mask
Alias for field number 1

name

Alias for field number 3
wd

Alias for field number O

12

Chapter 5. Module reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

inotify imple, Releasel.3

inotify_simple.parse_events (data)
Unpack data read from an inotify file descriptor into Event namedtuples (wd, mask, cookie, name). This
function can be used if the application has read raw data from the inotify file descriptor rather than calling
read().

Parameters data (bytes)— A bytestring as read from an inotify file descriptor.
Returns list of Event namedtuples
Return type list

class inotify_simple.flags
Inotify flags as defined in inotify.h but with IN_ prefix omitted. Includes a convenience method
from_mask () for extracting flags from a mask.

ACCESS =1
File was accessed

MODIFY = 2
File was modified

ATTRIB = 4
Metadata changed

CLOSE_WRITE = 8
Weritable file was closed

CLOSE_NOWRITE = 16
Unwritable file closed

OPEN = 32
File was opened

MOVED_FROM = 64
File was moved from X

MOVED_TO = 128
File was moved to Y

CREATE = 256
Subfile was created

DELETE = 512
Subfile was deleted

DELETE_SELF = 1024
Self was deleted

MOVE_SELF = 2048
Self was moved

UNMOUNT = 8192
Backing fs was unmounted

Q OVERFLOW = 16384
Event queue overflowed

IGNORED = 32768
File was ignored

ONLYDIR = 16777216
only watch the path if it is a directory

13

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

inotify imple, Releasel.3

DONT_FOLLOW = 33554432
don’t follow a sym link

EXCL_UNLINK = 67108864
exclude events on unlinked objects

MASK_ADD = 536870912
add to the mask of an already existing watch

ISDIR = 1073741824
event occurred against dir

ONESHOT = 2147483648
only send event once

class inotify_simple.masks
Convenience masks as defined in inotify.h but with IN_ prefix omitted.

CLOSE = 24

helper event mask equal to f1lags.CLOSE_WRITE flags.CLOSE_NOWRITE

MOVE = 192
helper event mask equal to flags .MOVED_FROM | flags.MOVED_TO

ALL EVENTS = 4095
bitwise-OR of all the events that can be passed to add_watch ()

14 Chapter 5. Module reference

CHAPTER O

Full source code

Presented here for ease of verifying that this wrapper is as sensible as it claims to be (comments stripped - see source
on github to see comments).

from sys import version_info, getfilesystemencoding
import os

from enum import Enum, IntEnum

from collections import namedtuple

from struct import unpack_from, calcsize
from select import poll

from time import sleep

from ctypes import CDLL, get_errno, c_int
from ctypes.util import find_library

from errno import EINTR

from termios import FIONREAD

from fcntl import ioctl

from io import FileIO

PY2 = version_info.major < 3
if PY2:
fsencode = lambda s: s if isinstance (s, str) else s.
—encode (getfilesystemencoding())
IntEnum = type('IntEnum', (long, Enum), {})
else:

from os import fsencode, fsdecode
__version__ = '1.3.5"
_all___ = ['Event', '"INotify', 'flags', 'masks', 'parse_events']
_libc = None
def _libc_call (function, =*args):

while True:
rc = function(xargs)

(continues on next page)

15

inotify imple, Releasel.3

(continued from previous page)

if rc != -1:
return rc
errno = get_errno ()
if errno != EINTR:
raise OSError (errno, os.strerror (errno))

Event = namedtuple('Event', ['wd', 'mask', 'cookie', 'name'])

_EVENT_FMT = 'iIII'
_EVENT_SIZE = calcsize (_EVENT_FMT)

class INotify (FileIO):
fd = property(FileIO.fileno)

def _ _init__ (self, inheritable=False, nonblocking=False) :
try:
libc_so = find_library('c')
except RuntimeError:
libc_so = None

global _libc; _libc = _libc or CDLL(libc_so or 'libc.so.6', use_errno=True)
O_CLOEXEC = getattr(os, 'O_CLOEXEC', 0)
flags = (not inheritable) * O_CLOEXEC | bool (nonblocking) % os.O_NONBLOCK

FileIO.__init__ (self, _libc_call(_libc.inotify_initl, flags), mode='rb')
self._poller = poll()
self._poller.register(self.fileno())

def add_watch(self, path, mask):
path = str(path) if hasattr(path, 'parts') else path
return _libc_call(_libc.inotify_add_watch, self.fileno(), fsencode (path),
—mask)

def rm_watch(self, wd):
_libc_call(_libc.inotify_rm_watch, self.fileno (), wd)

def read(self, timeout=None, read_delay=None) :
data = self._readall ()
if not data and timeout != 0 and self._poller.poll (timeout) :
if read_delay is not None:
sleep (read_delay / 1000.0)
data = self._readall ()
return parse_events (data)

def _readall (self):
bytes_avail = c_int ()
ioctl (self, FIONREAD, bytes_avail)
if not bytes_avail.value:
return b''
return os.read(self.fileno (), bytes_avail.value)

def parse_events(data):
pos = 0
events = []
while pos < len(data):
wd, mask, cookie, namesize = unpack_from(_EVENT_FMT, data, pos)
pos += _EVENT_SIZE + namesize
name = data[pos - namesize : pos].split(b'\x00', 1)I[0]

(continues on next page)

16 Chapter 6. Full source code

inotifyimple, Releasel.3

(continued from previous page)

events.append (Event (wd, mask, cookie,

return events

class flags (IntEnum) :
ACCESS 0x00000001
MODIFY 0x00000002
ATTRIB = 0x00000004
CLOSE_WRITE 0x00000008
CLOSE_NOWRITE 0x00000010
OPEN 0x00000020
MOVED_FROM 0x00000040
MOVED_TO 0x00000080
CREATE 0x00000100
DELETE 0x00000200
DELETE_SELF 0x00000400
MOVE_SELF 0x00000800

UNMOUNT
Q_OVERFLOW
IGNORED

0x00002000
0x00004000
0x00008000

ONLYDIR 0x01000000
DONT_FOLLOW 0x02000000
EXCL_UNLINK 0x04000000
MASK_ADD 0x20000000
ISDIR 0x40000000
ONESHOT 0x80000000

@classmethod
def from_mask(cls,
return

mask) :
[flag for flag in cls._ _members__ .values()

class masks (IntEnum) :

CLOSE = flags.CLOSE_WRITE | flags.CLOSE_NOWRITE
MOVE = flags.MOVED_FROM | flags.MOVED_TO
ALL_EVENTS = (flags.ACCESS | flags.MODIFY |

flags.CLOSE_NOWRITE |
flags.CREATE |

flags.OPEN |

flags.DELETE| flags.DELETE_SELF |

flags.ATTRIB |
flags.MOVED_FROM |

name if PY2 else fsdecode (name)))

if flag & mask]

flags.CLOSE_WRITE |
flags.MOVED_TO |
flags.MOVE_SELF)

17

inotify imple, Releasel.3

18 Chapter 6. Full source code

Index

A

ACCESS (inotify_simple.flags attribute), 13
add_watch () (inotify_simple.INotify method), 11
ALL_EVENTS (inotify_simple.masks attribute), 14
ATTRIB (inotify_simple.flags attribute), 13

C

CLOSE (inotify_simple.masks attribute), 14

close () (inotify_simple.INotify method), 12
CLOSE_NOWRITE (inotify_simple.flags attribute), 13
CLOSE_WRITE (inotify_simple.flags attribute), 13
cookie (inotify_simple.Event attribute), 12
CREATE (inotify_simple.flags attribute), 13

D

DELETE (inotify_simple.flags attribute), 13
DELETE_SELF (inotify_simple.flags attribute), 13
DONT_FOLLOW (inotify_simple.flags attribute), 13

E

Event (class in inotify_simple), 12
EXCL_UNLINK (inotify_simple.flags attribute), 14

F

f£d (inotify_simple.INotify attribute), 11
fileno () (inotify_simple.INotify method), 12
flags (class in inotify_simple), 13

IGNORED (inotify_simple.flags attribute), 13
INotify (class in inotify_simple), 11
ISDIR (inotify_simple.flags attribute), 14

M

mask (inotify_simple. Event attribute), 12
MASK_ADD (inotify_simple.flags attribute), 14
masks (class in inotify_simple), 14

MODIFY (inotify_simple.flags attribute), 13
MOVE (inotify_simple.masks attribute), 14

MOVE_SELF (inotify_simple.flags attribute), 13
MOVED_FROM (inotify_simple.flags attribute), 13
MOVED_TO (inotify_simple.flags attribute), 13

N

name (inotify_simple.Event attribute), 12

O

ONESHOT (inotify_simple.flags attribute), 14
ONLYDIR (inotify_simple.flags attribute), 13
OPEN (inotify_simple.flags attribute), 13

P

parse_events () (in module inotify_simple), 12

Q

Q_OVERFLOW (inotify_simple.flags attribute), 13

R

read () (inotify_simple.INotify method), 12
rm_watch () (inotify_simple.INotify method), 12

U

UNMOUNT (inotify_simple.flags attribute), 13

W

wd (inotify_simple.Event attribute), 12

19

	Installation
	Introduction
	Example usage
	Tips and tricks
	Gracefully exit a blocking read()

	Module reference
	Full source code
	Index

